
CS 4530
Fundamentals of Software Engineering

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

Module 16: Refactoring and Technical Debt

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals
By the end of this lesson, you should be able to…

• Define “refactoring” and give examples.
• Explain how refactoring fits into an agile

development process and help reduce technical debt
• Define “technical debt”
• Suggest when it may be appropriate to accrue

technical debt and when it may be appropriate to
retire it.

Let’s discuss Refactoring first

Refactoring

• Refactoring is the process of applying transformations
(refactorings) to a program, and the internal structure of the
system is improved

• Goals:
- keep program readable, understandable, and maintainable
- by eliminating small problems soon, you can avoid big

troubles later
• Characteristics:

- behavior-preserving: make sure the program works after
each step

- small steps

Example Refactoring
Introduce Parameter and Extract optional Parameter
Original Code

Refactored Code # 1

function greeter (firstName : String, lastName : String) {
return "Hello, " + firstName + " " + lastName;

}
document.body.innerHTML = greeter("Jane","User");

function greeter (firstName : String, lastName : String, greeting = "Hello, ") {
return greeting + firstName + " " + lastName;

}
document.body.innerHTML = greeter("Jane","User");
Refactored Code # 2
function greeter (firstName : String, lastName : String, greeting : String) {

return greeting + firstName + " " + lastName;
}
document.body.innerHTML = greeter("Jane","User“,"Hello, ");

Martin Fowler is the “father” of refactoring

“Any fool can write code that a
computer can understand.
Good programmers write code
that humans can understand.”

Fowler’s book

• presents a catalogue of refactorings, similar to the catalogue of
design patterns in the GoF book
• Gave names to each transformation

• Helpful for team communication
• Identified and named “bad smells” (indications that refactoring

may be needed)
• Discusses when and how to apply refactorings

• many of Fowler’s refactorings are the inverse of another refactoring
- often there is not a unique “best” solution
- discussion of the tradeoffs

Fowler gave colorful names to many of
the “code smells” he identified
A complete list (with links to book!)
Mysterious Name
Duplicated Code
Long Function
Long Parameter List
Global Data
Mutable Data
Divergent Change
Shotgun Surgery
Feature Envy
Data Clumps
Primitive Obsession
Repeated Switches

“Refactoring: Improving the Design of Existing Code,” Martin Fowler, 1992

Loops
Lazy Element
Speculative Generality
Temporary Field
Message Chains
Middle Man
Insider Trading
Large Class
Alternative Classes with Different Interfaces
Data Class
Refused Bequest

https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec1
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec2
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec3
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec4
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec5
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec6
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec7
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec8
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec9
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec10
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec11
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec12
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec13
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec14
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec15
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec16
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec17
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec18
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec19
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec20
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec21
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec22
https://learning.oreilly.com/library/view/refactoring-improving-the/9780134757681/ch03.xhtml#ch03lev1sec23

The most common refactoring is renaming

• Rename Function (124) (to rename a function)

• Rename Variable (137)

• Rename Field (244).

• People are often afraid to rename things, thinking it’s not worth the
trouble, but a good name can save hours of puzzled incomprehension
in the future.

• Renaming is not just an exercise in changing names. When you can’t
think of a good name for something, it’s often a sign of a deeper design
malaise. Puzzling over a tricky name leads to significant improvements
to your code

“Refactoring: Improving the Design of Existing Code,” Martin Fowler, 1992

Luckily, VSC automates this and many other
common transformations

“Local” Refactorings

Rename rename variables, fields methods, classes, packages
provide better intuition for the renamed element’s purpose

Extract Method
extract statements into a new method
enables reuse; avoid cut-and-paste programming
improve readability

Inline Method replace a method call with the method’s body
often useful as intermediate step

Extract Local introduce a new local variable for a designated expression

Inline Local replace a local variable with the expression that defines its value

Change Method
Signature reorder a method’s parameters

Encapsulate
Field introduce getter/setter methods

Convert Local
Variable to Field

convert local variable to field
sometimes useful to enable application of Extract Method

https://refactoring.guru/

Type-Related Refactorings

Generalize Declared Type replace the type of a declaration with a more
general type

Extract Interface create a new interface, and update declarations
to use it where possible

Pull Up Members move methods and fields to a superclass

Infer Generic Type Arguments infer type arguments for “raw” uses of generic
types

Commonly known as Refactoring by Abstraction
• Bad abstraction is worst than duplication (pieces of code that

look the same, still represent different concepts).
• Use “Rule of Three” – Three strikes and you refactor

https://understandlegacycode.com/blog/refactoring-rule-of-three/

Why Refactor?

• New or anticipated requirements require a different design
• Altered design will make testing easier
• Altered design will improve maintainability
• Fix sloppiness by programmers

• Retire or avoid technical debt

When to refactor?
Refactoring is incremental redesign
• Acknowledge that it will be difficult to get design right the first

time

• When adding new functionality, fixing a bug, doing code review,
or any time

• A key part of TDD!

• Refactoring evolves design in increments

• Refactoring reduces technical debt

• What do you refactor?

Refactoring with TDD

• RED: The first step starts with writing the failing “red-test”.
You stop and check what needs to be developed.

• Green: In the second step, you write the simplest enough
code and get the development pass “green” testing.

• Refactor: In the final and third step, you focus on improving
and enhancing your code keeping your test green.

Refactoring Benefits

• small incremental steps that preserve program behavior
• Regression testing is simplified

• most steps are so simple that they can be automated
- automation limited in complex cases

• refactoring does not always proceed “in a straight line”
- sometimes, you want to undo a step you did earlier…
- …when you have insights for a better design
- Having a name for what you did makes it easier to undo a step

- (but of course there’s always git!)

Refactoring Risks

• Developer time is valuable: is this the best use of time
today?

• Despite best intentions, may not be safe

• Potential for version control conflicts

It brings us to Technical Debt

Technical Debt is the Accumulation of
Internal Problems in Project Codebase

• Internal because they don’t show
as user-visible failures.

• Examples:
• Code Smells;
• Missing tests;
• Missing documentation;
• Dependency on old versions

of third-party systems;
• Inefficient and/or non-

scalable algorithms.

Not just code!

Example of Debt
• Code Smells;
• Missing tests;
• Missing documentation;
• Dependency on old versions

of third-party systems;
• Inefficient and/or non-scalable

algorithms.

Example of Cost
• “Smelly” code is less flexible;
• Need to revert breaking

change;
• Can’t figure out how to use;
• May have take over

maintenance of old system;
• Lose potential customers.

20

Technical Debts have costs (“interest” on the
debt).

Interest on Technical Debt Accrues over Time

21

Technical
Cost

Time

Break even point for cost

Invest time to paying
off technical debt
=> Refactoring

Make Technical Debt Visible

22

• Help stakeholders visualize data (like progress, effect of debt,
refactoring)

https://www.scrum.org/resources/blog/making-tech-debt-visible

Here are the steps:
1. Plan the ideal.
2. Track your Actual.
3. Track what you

spend on waste.
4. Put it all together

https://www.scrum.org/resources/blog/making-tech-debt-visible

• Prototyping:
• If code will be discarded, or drastically rewritten,

don’t waste time perfecting it.
• Getting a product out the door:

• Time is often crucial in a competitive environment.
• Fixing a critical failure:

• People are waiting.
• Maybe a simple algorithm is good enough:

• “Premature optimization is the root of all evil”
• Tony Hoare, Donald Knuth

23

Good Reasons to Go Into Technical Debt

•Total cost of ownership generally higher than
implementation-level issues; harder to get out of
choices of:
•Language
•Middleware frameworks
•Deployment pipeline

•Consider: What are the quality attributes that our
software needs to ultimately satisfy, and how do
these architectural decisions reflect those
attributes?

24

Architectural Technical Debt is Most Expensive

The Y2K bug is an example of
architectural technical debt
• How many digits does it take to store a year?

$24,847.09 in 2022 USD

“I just never imagined anyone
would be using these systems
10 years later, let alone 20.”

Philippe Kruchten, Robert Nord, Ipek Ozkaya:
“Managing Technical Debt: Reducing Friction in Software Development”

26

Evolving Languages bring Technical Debt

https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack

Classes
Promises

PLUS:
2016: ES7 (Array.includes)
2017: ES8 (Async/Await)
2018: ES9 (rest/spread operator, async iterators)

https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack

27

Architectural Technical Debt: Facebook

https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack

https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack

28

Architectural Technical Debt: Facebook - Hack
• Hack added new safety features.
• It uses automatic type inference (Traditional PHP is

dynamically typed)
• It lets programmers specify the types of some

variables in their code and uses logic to infer the
rest based on how variables are used together,
issuing an error if the code’s logically inconsistent.

• When a file has changed, the two versions are
compared to deduce what must be rechecked at a
very fine-grained level: at the method level, not at
the file level

• “Hack enables us to dynamically convert our code
one file at a time” - Facebook Technical Lead
HipHop VM (HHVM)

Facebook’s Runtime Engine supports PHP and Hack. https://hhvm.com/

https://hhvm.com/

29

Architectural Technical Debt: Instagram

https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack

https://thenewstack.io/instagram-makes-smooth-move-python-3/

https://www.fastcompany.com/3028778/why-facebook-invented-a-new-php-derived-language-called-hack
https://thenewstack.io/instagram-makes-smooth-move-python-3/

30

Case Study: Instagram (Python 2 to Python 3)

http://euccas.github.io/blog/20170616/how-instagram-moved-to-python-3.html

PyCon 2017 Keynote Talk: https://www.youtube.com/watch?v=66XoCk79kjM

• Migration was done over 10 months, all changes merges to Main branch
• Working Rule: No Python 3, no new package

Examples of Refactoring:
• Differences in unicode, str, bytes. Solved by using helper functions
• Iterator differences, such as map. Solved by converting all maps to list in

Python 3
• Dictionary order is different in different Python versions, which caused

differences in the dumped JSON data. Solved by forcing sorted_keys in
json.dump function

http://euccas.github.io/blog/20170616/how-instagram-moved-to-python-3.html
https://www.youtube.com/watch?v=66XoCk79kjM

31

Case Study: Instagram (Python 2 to Python 3)

http://euccas.github.io/blog/20170616/how-instagram-moved-to-python-3.html

PyCon 2017 Keynote Talk: https://www.youtube.com/watch?v=66XoCk79kjM

• Feb 2017: Completely dropped Python 2

http://euccas.github.io/blog/20170616/how-instagram-moved-to-python-3.html
https://www.youtube.com/watch?v=66XoCk79kjM

• Set aside time to pay off
technical debt:

• Google has (had?) “20%-time” for
tasks such as this.

• A new initiative can take on
some technical debt:

• Refactoring at the start of a
project.

• Don’t keep on putting off!
• When a crisis hits, it’s too late;
• Hasty fixes to unmaintainable

code multiplies problems;
• Eventually mounting technical

debt can bury the team.

32

Retire Technical Debt at Leisure

• What if we need more than 50 people in a town?
• Discuss strategies for determining if/when/how to migrate to Amazon’s

Chime Video service?

33

Twilio Programmable Video vs Amazon
Chime Video conferencing service

Review: Learning Objectives for this
Lesson
•You should now be able to:

• Define “refactoring” and give examples.
• Explain how refactoring fits into an agile

development process
• Define “technical debt”
• Suggest when it may be appropriate to accrue technical

debt and when it may be appropriate to retire it.

34

	CS 4530
Fundamentals of Software Engineering
	Learning Goals
	Let’s discuss Refactoring first
	Refactoring
	Example Refactoring
	Martin Fowler is the “father” of refactoring
	Fowler’s book
	Fowler gave colorful names to many of the “code smells” he identified
	The most common refactoring is renaming
	Luckily, VSC automates this and many other common transformations
	“Local” Refactorings
	Type-Related Refactorings
	Why Refactor?
	When to refactor?
	Refactoring with TDD
	Refactoring Benefits
	Refactoring Risks
	It brings us to Technical Debt
	Technical Debt is the Accumulation of Internal Problems in Project Codebase
	Slide Number 20
	Interest on Technical Debt Accrues over Time
	Make Technical Debt Visible
	Slide Number 23
	Slide Number 24
	The Y2K bug is an example of architectural technical debt
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Review: Learning Objectives for this Lesson

